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We present a new method, the least-error matrix analysis (LEMA), to quantify the dynamic matrix from a
series of 2D NMR exchange spectra. The method is based on a weighted averaging of individual dynamic
matrices. The matrices are obtained by full-matrix analysis (FMA) from a series of 2D exchange spectra
recorded at different mixing times. The weights, calculated by error propagation analysis, are explicit functions
of the mixing time. The principal advantage of LEMA in comparison to FMA is that it uses all the known
relationships between the spectral peaks: the peak correlations within 2D spectra, and the mixing time evolution
among the spectra. We tested LEMA by analyzing a series of 10 cross-relaxation spectra (NOESY,τm ) 60
µs-1.28 s) in a rigid 10-spin system (cyclo(L-Pro-Gly) in 3:1 v/v H2O/DMSO). At 233 K the dipeptide has
a mobility like a small protein with a correlation time of 3.8 ns. While FMA atτm ) 30 ms could extract
only 14 distances in a range 1.75-3 Å, LEMA provided 22 distances, of which the longest was 4 Å. The
extension of the available interproton distances from 3 to 4 Å afforded by LEMA is caused by a 10-fold
decrease of the lower limit of measurable cross-relaxation rates, from-0.59 to-0.06 s-1. The most important
property of LEMA, provision of accurate average values of magnetization exchange rates from a given set of
peak volumes, is verified experimentally on a model system.

Introduction

The most notable forms of two-dimensional (2D) NMR
exchange spectroscopy1 that contributed immensely to the
popularity of 2D NMR method in chemistry2 are the chemical
exchange spectroscopy (EXSY)3,4 and nuclear Overhauser
enhancement spectroscopy (NOESY).5,6 A particularly impres-
sive application of NOESY is the determination of the solution
structure of proteins.7 Although a semiquantitative analysis was
typically used for it, it is well recognized that the quantitative
analysis of cross-relaxation spectra might be more useful.8-16

Similarly, the quantification of EXSY spectra improves their
utility to study chemically exchanging systems.17-21 However,
only a few attempts have been made to estimate the corre-
sponding error limits.19,22-27

The determination of the magnetization exchange rate con-
stants [L]pq is independent from the type of exchange observed
(cross-relaxation in NOESY, or chemical exchange in EXSY),
since both transfer types are directed by the same master
equation. The methods to quantify exchange spectra can be
roughly divided into two categories: buildup rate analysis
(BU)6,28and full-matrix analysis (FMA).8,11,13 The BU analysis
provides the [L]pq’s from the time evolution of individual cross-
peaks (Figure 1a), whereas FMA utilizes all peaks at a single
mixing time (Figure 1b). Theoretically, FMA needs only one
spectrum at an arbitrary mixing time. However, in the presence
of noise the errors are close to minimum only in a limited mixing
time interval.19,25,26 Since the width and position of the interval
is not known in advance, several experiments in a broad range
of mixing times are needed. Thus, both BU and FMA require
a set of exchange spectra at different mixing times. For peak

volume normalization, FMA requires an exchange spectrum at
zero mixing time as well. The principal weakness of BU
analysis is that it ignores the correlations among the cross-peaks
within individual 2D spectra (Figure 1a). The calculation of
one buildup curve ignores the properties of all other buildup
curves. Similarly, the FMA ignores the known dependence of
cross peaks on time evolution; the FMA at one mixing time is
independent from the FMA at any other mixing time (Figure
1b). A superior method shall use all available correlations
within and among the spectra (Figure 1c) and shall minimize
the random errors in a least-squares manner. Here we present
a method that satisfies these requirements: a least error matrix
analysis (LEMA). It provides the best estimates of magnetiza-
tion exchange rate constants and their errors, using in a least-
squares sense the information from a series of 2D spectra
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Figure 1. Schematic representation of the connectivities used in
different methods for quantification of a series of 2D exchange
spectra: (a) Buildup analysis (BU) uses the time evolution of individual
cross peaks ignoring their connectivities within the spectra. (b) Full-
matrix analysis (FMA) takes into account the connectivities among the
peaks within a 2D spectrum but ignores the time evolution of peaks.
(c) Least-errors matrix analysis (LEMA) uses all available correlations.
It exploits the connectivities within a spectrum as FMA and the
connectivities over mixing time as BU.
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recorded at different mixing times. We demonstrate its use and
properties on a model dipeptide system, omitting the derivation
of formulas.

Least Error Matrix Analysis (LEMA)

The spectral matrix of peak volumesA(τm) at mixing time
τm is related to the dynamic matrixL by6

from where

From a set of dynamic matricesLk obtained using eq 2, the
best values of magnetization exchange rate constants [L]pq are
found by iterative least-squares method:

where [Lk]pq is the magnetization exchange rate constant for
the (p,q)th spin pair obtained by FMA from thekth spectrum
and,σk

(i) is the propagated error calculated as26

where∆Anorm is the matrix of peak volume errors, andL(i) is
the ith approximation of the dynamic matrix. The subscript
norm indicates that the volume errors are normalized, i.e.,
expressed as a fraction of the volume of a diagonal peak (from
the spin site with unit population) at zero mixing time. As a
generalization of the case of equal random errors and equal spin
populations,26 the propagation of errors in a system with
arbitrary spin populations and arbitrary uncorrelated volume
errors is described by

The indexes in quadruple summation traverse the elements of
volume error matrix∆Anorm, and the eigenvaluesλ and left
eigenvectorsν of L; np denotes the number of spins atpth spin
site. The uncertainties in the magnetization exchange rates are
given by29

Since the error limits depend on the calculated dynamic matrix
L, and in return, the average value ofL depends on the error
limits, eqs 3-6 must be used in an iterative manner. For the
first iteration, a subset ofLk that corresponds to nonextreme
mixing times is used. In absence of crude errors,L(i) converges
toward the final valueL usually after two iterations. The final
L is the best ensemble average for a given set of 2D experiments.
The particular FMA calculations (performed once for each
spectral matrix) provide information about relations at a given
mixing time, while the weights [σk

(i)]pq
2 enforce the relationship

among the cross peaks at different mixing times (Figure 1c).

The least-squares minimization of random errors is accomplished
by eq 3 that represents the standard expression for weighted
averaging of a set of independent measurements.29 Thus, LEMA
provides statistically the best estimate for the dynamic matrix
(eq 3) and its error limits (eq 6) from a set of independently
determined matrixes at different mixing times.

Materials and Methods

To demonstrate the usefulness of LEMA, we have chosen a
ten spin system, cyclo-(L-Pro-Gly) (I ) (Scheme 1) in 3:1 v/v
mixture H2O/DMSO. At 233 K the dipeptide’s cross-relaxation
rates are between 0.001 and 10 s-1, as for small proteins. At
low temperatures the molecule is apparently rigid and most
likely tumbles isotropically. A series of 2D exchange spectra
(NOESY) has been recorded at 233 K on a Bruker AMX 500
spectrometer, with mixing times 0.000 06, 0.01, 0.02, 0.03, 0.04,
0.08, 0.16, 0.32, 0.64, and 1.28 s. The spectral data were
processed using the Felix 95 (MSI Inc., San Diego, CA) software
package. The peak volumes were determined by direct integra-
tion. Because of the severe spectral overlap between Pro Hâ2

and Pro Hγ3 their peak volumes were measured together, and
the respective component volumes were separated by the hybrid
matrix approach using the known crystal structure.30 The proton
positions were optimized upon their attachment to heavy atoms
in the crystal structure, by combined steepest descent and
adopted basis Newton-Raphson method using the Charmm/
Quanta (MSI Inc., San Diego, CA) software package. Also,
we carried out a molecular dynamics (MD) simulation in vacuo
and minimized the structure obtained after a 1 nsrun. Compar-
ing the two models (X-ray and molecular dynamics), we have
estimated an average uncertainty in the geminal interproton
distances at 2σ ) 0.025 Å, that translated into 8% relative error
in the model cross-relaxation rates. Similarly, the errors for
other proton pairs are estimated as 2σ ) 0.1 Å for distances
below 3 Å and 2σ ) 0.2 Å for others. As a model geometry
we have used the average distances from the X-ray and MD
structure. The best agreement between the experimental and
the model values for cross-relaxation rates of geminal proton
pairs were found forτc ) 3.8( 0.2 ns. For symmetric cross
peaks, the volume errors∆V were determined from the
difference of volume integrals and were estimated as∆V/V )
2σr ) 4.8% of the current peak volume. Also, an additive error
(due to random noise) is estimated as 2σnorm ) 0.1% of the
diagonal line atτm ) 0. For the diagonal lines the errors were
estimated as the deviation of the sum (diagonal+ descendant
cross-peaks) from a monoexponential decay. We express the
error limits by 2 standard deviations, since(2σ represents the
error interval with 95% probability. Then, in a set of 22
measured distances, only one distance is expected to deviate
more than(2σ from the model value. The calculations were

SCHEME 1

A(τm) ) exp(-Lτm)A(0) (1)

L ) -ln(A(τm) A(0)
-1)/τm (2)

[L(i+1)]pq ) ∑
k

[Lk]pq

[σk
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2/∑k
1

[σk
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2
(3)

σk
(i) ) {σ(τmk
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σ(τmk
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(npνprνrk
T nlνlsνsq

T )2((1- δλrλs
)
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performed in Matlab 4.2c (Mathworks Inc.) software package
on a Silicon Graphics Indigo2 computer (SGI Inc.). The Matlab
implementation of LEMA is available from authors by email
request (zsolt@mayo.edu).

Experimental Example: Cross-Relaxation in cyclo-
(L-Pro-Gly) at 233 K

The cumulative experimental results are presented in Figure
2, and for a set of representative spin pairs more details are
shown in Table 1. Figure 2a shows the experimental magne-
tization exchange rates calculated by LEMA (filled squares and
thick error bars) and by FMA (thin error bars), in comparison
with the model values (open rectangles). For clarity, the average
values from FMA calculations are not shown. To emphasize
the importance of their dynamic range, the cross-relaxation rates
are plotted on a logarithmic scale. Figure 2b shows the
respective interproton distances. In both figures, the values are
sorted according to the model distances. The longest 15
interproton distances (r > 5.2 Å) are not shown because their
cross-relaxation rates are too low to be deduced from the present
experiments.
As is evident from Figure 2, the two sets of experimental

values obtained using LEMA and FMA agree with the model
within two standard deviations. However, the LEMA error
limits are always narrower than the corresponding FMA limits.
This is an obvious consequence of the ensemble-averaging
property of LEMA in comparison to FMA. An important
implication of such error reduction is that many cross-relaxation
rates that cannot be determined from single FMA can be
accurately determined by LEMA. That is the case with cross-
relaxation rates 13, 15-18, 20, 21, and 27 in Figure 2 and Table
1. In FMA, the lower bond of estimated cross-relaxation rate
errors becomes zero, which in return yields no upper limit for
the corresponding interproton distance.
For interproton distances above 4 Å both methods fail to

provide the cross-relaxation rates with a reasonable lower bond,
with one exception in LEMA. In both cases, the upper error
limits and the average cross-relaxation rates level off at
approximately-0.1 s-1. This is due to the fact that their cross
peaks do not show up above the noise level even at the longest
mixing time for which FMA does not fail. At the longer mixing
times, when such peaks may have intensity above the noise
level, the intensity of cross-peaks for the fastest process becomes
equal to the intensities of the respective diagonal peaks within

the limits of integration errors. Then, FMA fails,26,31 being
unable to produce any result23 or yielding a completely different
cross-relaxation matrix.32 Thus, the lower limits for the
accessible cross-relaxation rates (and the upper limit of the
accessible distances) are determined by the longest mixing time
and by the smallest peak volume that can be integrated. The
longest mixing time is determined by the fastest exchange
process. The smallest volume that can be integrated with a
reasonable error is determined mostly by the signal-to-noise
ratio. In present experiments, the range in which the magnetiza-
tion exchange rates can be measured spans 2 orders of
magnitude: from-7 s-1 for a distance of 1.75 Å to 0.07 s-1

for 4 Å. For measurements of interproton distances up to 5 Å,
it would be necessary to measure the cross-relaxation rates as
low as 0.01 s-1. This can be achieved either by increasing the
signal-to-noise ratio or by eliminating the fastest exchange
process, the cross-relaxation among geminal spin pairs.
Another important property of magnetization exchange

measurement that can be noticed from Figure 2 is a complete
lack of correlation between the cross-relaxation rates (interproton
distances) and their errors. This is a consequence of the fact
that the spin diffusion is equally efficient in propagating errors
as in transferring magnetization from one spin to the other.26

Thus, for a given spin pair, the error is much larger in the
presence of other spins. For example, the distances in spin pairs
13 (Pro Hγ2-Pro Hδ3) and 14 (Pro HR-Pro Hγ3) are ap-
proximately the same 2.80 vs 2.84 Å, but due to the relative
isolation of Pro HR proton, the distance error for the second
pair is over 5 times smaller, 0.13 vs 0.7 Å (Table 1).
Also worth noticing is that all pairs which are well connected

through the network have commensurate absolute errors irre-
spectively of the values of [L]pq. An important consequence is
that in the presence of fast processes (large [L]pq) the slow
processes (small [L]pq) cannot be satisfactorily quantified. This
is even more obvious when the [L]pq values are converted into
interproton distances. Thus, even a modest improvement of the
error limits for small [L]pq’s may have an immense effect on
the upper error limits of the derived distances. In the structure
determination, the reduction of error limits of the cross-
relaxation rate constants facilitated by LEMA significantly
improves the quality of geometrical input. Similarly, in a study
of systems with chemical exchange, LEMA provides the best
estimate of the chemical exchange rate constants from a given
set of experimental data.

TABLE 1: Comparison of LEMA and FMA ( τm ) 0.03 s) Cross-Relaxation Rates and Interproton Distances in
cyclo-(L-Pro-Gly) (Errors Are 2 Standard Deviations, ∆ ) 2σ)

indexa spin pair
-Lmxb/
s-1

+∆Lmxc/
s-1

-∆Lmxc/
s-1

-LLEMAd/
s-1

∆LLEMAe/
s-1

-LFMAf/
s-1

∆LFMAg/
s-1

rmxh/
Å

∆rmx/
Å

rLEMA/
Å

+∆rLEMA/
Å

-∆rLEMA/
Å

rFMA/
Å

+∆rFMA/
Å

-∆rFMA/
Å

1 ProHγ3-ProHγ2 7.32 0.60 0.66 6.13 0.61 6.69 1.58 1.76 0.025i 1.81 0.03 0.03 1.78 0.08 0.06
4 GlyHR3-GlyHR2 6.93 0.56 0.62 7.57 0.63 7.83 1.64 1.77 0.025i 1.75 0.02 0.02 1.74 0.07 0.05
6 GlyHN-GlyHR2 1.28 0.28 0.38 1.53 0.21 1.58 0.51 2.35 0.10 2.28 0.06 0.05 2.27 0.15 0.10
9 ProHR-ProHâ3 1.14 0.25 0.33 1.19 0.16 1.19 0.45 2.40 0.10 2.38 0.06 0.05 2.38 0.20 0.12
13 ProHγ2-ProHδ3 0.45 0.08 0.11 0.46 0.34 0.34 0.34 2.80 0.10 2.79 0.70 0.25 2.93∞ 0.51
14 ProHR-ProHγ3 0.41 0.08 0.10 0.57 0.14 0.59 0.23 2.84 0.10 2.69 0.13 0.10 2.67 0.23 0.14
15 ProHR-GlyHR3 0.32 0.06 0.07 0.21 0.11 0.14 0.14 2.95 0.10 3.19 0.43 0.22 3.40∞ 0.82
20 ProHR-ProHδ3 0.14 0.04 0.06 0.14 0.10 0.055 0.054 3.39 0.20 3.40 0.85 0.30 3.97∞ 1.02
21 ProHR-GlyHN 0.069 0.018 0.026 0.11 0.08 0.15 0.15 3.82 0.20 3.52 0.82 0.30 3.35∞ 0.49
22 ProHR-ProHγ2 0.064 0.017 0.024 0.054 0.053 0.13 0.12 3.87 0.20 4.00∞ 0.63 3.46 ∞ 0.59
27 ProHR-GlyHR2 0.042 0.010 0.015 0.11 0.10 0.064 0.062 4.14 0.20 3.56 2.79 0.38 3.87∞ 1.05

aOrdinal number in Figure 2.bCross-relaxation rates from hybrid model (X-ray and molecular dynamics).c Lmx’s are calculated from the model
Vmx’s which have symmetric error limits. Due to finite∆r’s, the cross-relaxation error limits are asymmetric.dCross-relaxation rates calculated
from a series of NOESY spectra (τm ) 0.000 06, 0.01, 0.02, 0.03, 0.04, 0.08, 0.16, 0.32, 0.64, and 1.28 s) by LEMA (eq 3).eError limits from eq
6. f Cross-relaxation rates calculated by FMA (eq 2) from NOESY atτm ) 0.03 s.g Error limits from eq 5.h Interproton distances from a “hybrid”
model: the average of the respective distances from the X-ray structure and from minimized MD structure.i For geminal pairs, the error limits
were estimated by comparing the interproton distances in X-ray and MD models; a similar estimate (2σ ) 0.025) is obtained from uncertainty in
CR-H distance in high-resolution neutron diffraction structures of amino acids.33 There, it was found that the CR-H distance varies(0.008 Å due
to the weak hydrogen bonding. Assuming that the HCH angle is constant, the uncertainty inrCH of 0.008 Å propagates intorHH as 2σHH ) 0.025
Å.
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Conclusion

In conclusion, we have proposed a least-squares method for
matrix analysis, LEMA, that provides the best estimate of the
dynamic matrix by weight averaging the dynamic matrices

determined at different mixing times. We have shown that the
high precision analysis of dynamic systems (chemical exchange
and cross-relaxation) studied by 2D exchange spectroscopy is
possible only from a series of 2D experiments recorded at
different mixing times. The accuracy of the deduced dynamic
matrices (chemical exchange or cross-relaxation) is determined
by the range of the measured magnetization exchange rate
constants and by the accuracy of peak volume integrals.
Ultimately, both are governed by the signal-to-noise ratio of
the volume integrals. An unavoidable practical limitation is
that, in principle, the slow processes (in both EXSY and
NOESY) cannot be well quantified in the presence of fast ones.
However, as we have experimentally demonstrated, LEMA can
extend the lower limit of magnetization exchange rate constants
for an order of magnitude in comparison to the individual FMA
of the same data set.
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Figure 2. Cross-relaxation rates (a) and interproton distances (b) in
cyclo-(L-Pro-Gly) obtained by LEMA from a series of 2D exchange
spectra (filled squares). The thick error limits are from LEMA and
the thin ones from FMA at 0.03 s. Due to averaging, the LEMA error
limits are always narrower. When the cross-relaxation rates are
converted into distances (isotropic motion,τc ) 3.8 ns,ω0/2π ) 500
MHz) the improvement by LEMA is even more pronounced since the
upper limits of the distances are determined by the lower limits of the
cross-relaxation rates. The longest 15 interproton distances (not shown)
cannot be determined because their upper limits tend to infinity (the
lower bound of their respective cross-relaxation rates is zero). The
open rectangles represents the 2σ ranges of the cross-relaxation rates
and interproton distances derived from a hybrid model (the average of
X-ray and MD distances). The upper and lower limits of the
experimental interproton distances are not symmetric regarding the
average distance because of finite errors in the corresponding cross-
relaxation rates. Also, the magnitude of the errors (in both cross-
relaxation rates and the interproton distances) is not proportional to
the respective mean values due to the influence of the structure of
dynamic matrix on the absolute error.
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